🍆 Daerah Yang Memenuhi Sistem Pertidaksamaan Linear

langkah- langkah untuk menentukan daerah yang memenuhi sistem pertidaksamaan linear dua variabel di bawah ini 1. Lukis setiap garis dari pertidaksamaan linear dua variabel yang diberikan dalam masalah sistem pertidaksamaan linear dua variabel 2. Dengan menggunkan satu titik uji (biasanya titik O (0,0), tentukan daerah yang memenuhi setiap Gambardaerah himpunan penyelesaian dari sistem pertidaksamaan linear dua variabel di bawah ini, jika . x dan y . bilangan real. x ≥ 1, y ≥ 2, x + y ≤ 6, 2x + 3y ≤ 12 . grafik himpunan penyeesaian sistem pertidaksamaan di atas dapat ditunjukan dengan langkah-langkah sebagai berikut. Raster daerah yang memenuhi . x ≥ 1 . Berikutini penulis sajikan sejumlah soal dan pembahasan super lengkap tentang program linear (tingkat SMA/Sederajat) yang dikumpulkan dari uji kompetensi buku pegangan siswa, ujian sekolah, dan ujian nasional. Semoga dapat dimanfaatkan dengan sebaik-baiknya untuk keperluan asesmen dan pemantapan pemahaman materi. Soal juga dapat diunduh melalui tautan berikut: Download (PDF, 295 KB). Daerahpenyelesaian dari sistem pertidaksamaan linear dua variabel adalah daerah yang memenuhi semua pertidaksamaan dalam sistem. Contoh soal fTentukan nilai dari penyelesaian pertidaksamaan linear dua variabel berikut ini. x+y≤9 6x + 11y ≤ 66 X≥0 Y≥0 Penyelesaian f X + y ≤9 X+y=9 Next >> 6x + 11y ≤ 66 6x + 11y = 66 X ≥ 0 gambar Berikutadalah contoh dari sistem pertidaksamaan linear dua peubah: 3x + 8y ≥ 24, x + y ≥ 4, x ≥ 0, y ≥ 0. 1. Daerah Himpunan Penyelesaian Pertidaksamaan Linear Dua Peubah. Penyelesaian suatu pertidaksamaan linear dua peubah merupakan pasangan berurut (x,y) yang dapat memenuhi pertidaksamaan linear tersebut. Nilaioptimum adalah nilai maksimum dan nilai minimum suatu fungsi yang diberikan dalam suatu daerah penyelesaian sistem pertidaksamaan linear. Untuk memahami bagaimana cara menentukan nilai optimum fungsi objektif, perhatikan daerah penyelesaian (daerah yang diarsir) sistem pertidaksamaan linear x + 2y ≤ 10, x + y ≤ 8, x ≥ 0, y ≥ 0 Dalammatematika, daerah layak program linier adalah daerah penyelesaian sistem pertidaksamaan yang menjadi kendala dalam masalah program linier. ADVERTISEMENT Menyelesaikan masalah program linier atau program linear pada dasarnya adalah mencari titik yang membuat fungsi objektif (fungsi tujuan) mencapai nilai optimum dan memenuhi semua kendalanya. Diberikansistem pertidaksamaan linear seperi berikut ini. x ≥ 0 y ≥ 0 x + y ≤ 7 x + 3y ≤ 15 Tentukan daerah yang memenuhi sistem pertidaksamaan linear di atas. Jawab: 1. Daerah yang memenuhi pertidaksamaan x + y ≤ 7 2. Daerah yang memenuhi pertidaksamaan x + 3y ≤ 15 3. Selanjutnyatentukan daerah himpunan penyelesaian untuk pertidaksamaan 2x + 3y ≤ 6. Karena lebih kecil sama dengan (≤), maka daerah himpunan penyelesaiannya adalah daerah di bawah garis 2x + 3y = 6 termasuk semua titik sepanjang garis 2x + 3y = 6 seperti gambar di bawah ini. Daerah yang diarsir merupakan himpunan penyelesaian pertidaksamaan . Kelas 11 SMAProgram LinearPertidaksamaan Linear Dua VariabelPertidaksamaan Linear Dua VariabelProgram LinearALJABARMatematikaRekomendasi video solusi lainnya0317Bu Ayu membuat dua jenis kue, yaitu bolu dan cubit. Dalam...0252Seorang pedagang membeli sepatu tidak dari 25 pasang untu...0238Himpunan penyelesaian sistem pertidaksamaan 5x+3y>=15, 3...0223Gambarlah himpunan penyelesaian pertidaksamaan bidang Car...Teks videodisini kita pengen soal tentang program linier kita diminta untuk menentukan bentuk dari daerah penyelesaian sistem pertidaksamaan langkahnya adalah kita tulis dulu pertidaksamaan yang ada yang pertama adalah x lebih dari sama dengan 2 ini tidak perlu diplot karena mudah Y kurang dari = 8 dan X min Y kurang dari sama dengan 2 ini pertidaksamaan 1/2 dan yang ini ketiga untuk pertidaksamaan yang ketiga kita upload dulu X dan Y pada sumbu-x dan sumbu-y caranya adalah kita anggap ini suatu persamaan lalu kita buat tabel seperti ini x y jika x 60 berarti Min y akan = 2 artinya = min 2 dan jika 0 x kurang 0 = 2 maka x = 2 kemudian batik dari sini kita punya dua titik yaitu titik nol koma min dua dan titik 2,0 sekarang kita upload padaDina kartesius untuk pertidaksamaan yang pertama yaitu X lebih dari = b = 2 I nym udah berarti garisnya akan sejajar dengan sumbu y dan memotong x = 2 kira-kira seperti itu lalu karena dia hanya satu variabel dan dikatakan X lebih dari = berarti daerahnya adalah di kanan garis karena ini mudah ya Kalau lebih dari batik anaknya karena cuma satu variabel Kemudian untuk pertidaksamaan yang ke 2 Y kurang dari sama dengan 8 berarti garisnya akan sejajar dengan sumbu x dan memotong di Y = 8 karena hanya satu variabel dan pada y kemudian dikatakan kurang dari sama dengan 8 berarti ke bawah ini juga mudah ya keren di bawah pasti kurang dari sama dengan 8 Kemudian untuk yang terakhir kitab la titiknya kita punya titik nol koma min dua berarti di sini dan titikWi-fi di sini kemudian kita hubungkan berarti seperti itu kemudian kita ambil titik uji misalkan yang mudah adalah titik 0,0 kita unci titik 0,0 ke sini kita lihat bahwa 0 dikurang 0 Halo tanda pertidaksamaan x kurang dari sama dengan 2. Pernyataan ini kan benar sehingga titik 0,0 masuk ke penyelesaian garis orange berarti kita arsir yang ada 0,0 nya itu kita pernah in sehingga daerah penyelesaiannya adalah daerah yang paling baik ditunjuk panah yaitu yang ini kalau kita lihat segitiga ini akan siku-siku di sini karena sudah pasti ya karena si x sama X lebih dari sama dengan 2 itu sejajar sumbu y dan Y kurang dari = 8 sejajar sumbu x maka mereka pasti siku-siku Kemudian untuk mengetahui sama kakitidak kita harus tahu dulu titik potongnya kita lihat titik potong di sini ini banyak titik potong antara garis y = 8 dan persamaan yang X min Y = 2 jadi kalau kita subtitusikan X dikurang 8 = 2 sehingga x = 10 berarti titik potongnya adalah di 10,8 itu adalah titik potongnya maka kita bisa lihat ini Kan bertempat di 10 kemudian tinggi segitiganya adalah dari 8 sampai ke sumbu x itu 8 satuan sedangkan alasnya dari X = 2 sampai x = 10 yaitu 8 juga maka dapat disimpulkan bahwa segitiga siku-siku sama kaki 3 jawabannya adalah yang sampai jumpa pada pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Hai Quipperian, tahukah kamu jika tidak semua masalah matematis bisa diselesaikan dengan sistem persamaan, lho. Ada kalanya, permasalahan itu harus diselesaikan dengan pertidaksamaan. Terlebih lagi untuk hal-hal yang berkaitan dengan estimasi atau perkiraan. Sebagai contoh, kamu ingin membeli 2 bungkus makanan A dan 3 bungkus makanan B. Sementara uang yang kamu bawa hanya Nah estimasi harga setiap makanan yang akan kamu beli itu bisa ditentukan dengan pertidaksamaan lho. Oleh karena jenis makanannya ada dua, maka pertidaksamaan yang bisa digunakan adalah pertidaksamaan linear dua variabel. Lalu, apa yang dimaksud pertidaksamaan linear dua variabel? Yuk, simak selengkapnya! Pengertian Pertidaksamaan Linear Dua Variabel Pertidaksamaan linear dua variabel adalah pertidaksamaan linear yang memuat dua variabel, yaitu x dan y. Mengapa disebut pertidaksamaan linear? Karena pertidaksamaan ini menghasilkan grafik penyelesaian berupa garis lurus linear. Oleh karena suatu pertidaksamaan, maka akan berlaku tanda “”, “≤”, atau “≥”. Contoh pertidaksamaan linear dua variabel adalah sebagai berikut. Jika pada persamaan linear akan dihasilkan satu nilai tertentu, maka tidak demikian dengan pertidaksamaan. Solusi pertidaksamaan ditentukan melalui daerah penyelesaian pada grafik pertidaksamaan, sehingga memungkinkan adanya lebih dari satu penyelesaian. Bentuk Pertidaksamaan Linear Dua Variabel Pertidaksamaan linear dua variabel memiliki bentuk umum seperti berikut. ax + by ≤c tanda pertidaksamaannya bisa berupa “”, “≤”, atau “≥” Dengan a = koefisien x; b = koefisien y; dan c = konstanta. Perhatikan contoh pertidaksamaan linear berikut. x + 6y ≤ 24 Arti dari pertidaksamaan di atas adalah penjumlahan antara x dan 6y harus menghasilkan nilai paling besar 24 atau lebih kecil dari itu. Daerah Penyelesaian Pertidaksamaan Linear Dua Variabel Pada pembahasan di atas telah disinggung bahwa setiap pertidaksamaan pasti memiliki daerah penyelesaian yang memungkinkan lebih dari satu solusi penyelesaian. Lalu, bagaimana cara menentukan daerah penyelesaian? Daripada penasaran, yuk ikuti langkah-langkah berikut. Kamu gambarkan dulu garis persamaan linearnya. Caranya dengan mengubah tanda pertidaksamaan menjadi persamaan atau “=”. Misalnya untuk menggambarkan grafik 2x + 3y ” dibatasi oleh garis putus-putus. Untuk lebih jelasnya, perhatikan contoh berikut. Tentukan daerah penyelesaian dari pertidaksamaan 2x + y ≤ 4! Pembahasan Langkah pertama, gambarkan dahulu garis dari 2x + y = 4 pada koordinat Cartesius. Untuk menggambarkannya, tentukan nilai x saat y = 0 dan nilai y saat x = 0 seperti berikut. xyKoordinat040, 4202, 0 Substitusikan koordinat 0, 4 dan 2, 0 pada koordinat Cartesius seperti berikut. Langkah kedua, yaitu melakukan pengujian salah satu titik di luar garis. Untuk memudahkanmu, ambillah titik 0, 0, sehingga diperoleh 2x + y < 4 0 + 0 < 4 0 < 4 memenuhi Dengan demikian, daerah penyelesaiannya adalah daerah yang memuat koordinat 0, 0. Langkah ketiga, arsirlah daerah penyelesaiannya. Oleh karena memuat tanda “≤”, maka arsiran mengenai garis seperti berikut. Jadi, daerah penyelesaiannya adalah daerah di bawah garis sampai batas garisnya. Sistem Pertidaksamaan Linear Dua Variabel Sistem pertidaksamaan linear dua variabel adalah sistem yang memuat beberapa pertidaksamaan linear dua variabel. Sistem pertidaksamaan ini menghasilkan satu daerah penyelesaian yang dibatasi oleh garis-garis setiap persamaan linearnya. Artinya, daerah penyelesaian harus memenuhi semua pertidaksamaan yang ada. Perhatikan contoh berikut. Tentukan daerah penyelesaian dari pertidaksamaan berikut. x – 3y ≤ 3 x + y ≤ 3 Pembahasan Langkah pertama, tentukan dahulu titik potong setiap pertidaksamaan. Lalu, substitusikan setiap titik potong ke dalam koordinat Cartesius. Titik potong x – 3y ≤ 3 xyKoordinat0-10, -1303, 0 Titik potong x + y ≤ 3 xyKoordinat030, 3303, 0 Lalu, substitusikan ke dalam koordinat Cartesius seperti berikut. Garis x – 3y = 3 Garis x + y = 3 Langkah kedua, yaitu melakukan pengujian salah satu titik di luar garis. Untuk memudahkanmu, ambillah titik 0, 0, sehingga diperoleh Daerah penyelesaian x – 3y ≤ 3 Daerah penyelesaian x + y ≤ 3 Jika kedua garis digabung, akan diperoleh daerah penyelesaian tunggal seperti berikut. Jadi, daerah penyelesaiannya di bawah garis x – 3y = 3 dan di atas garis x + y = 3. Penerapan Pertidaksamaan Linear Dua Variabel dalam Kehidupan Berikut ini merupakan penerapan sistem pertidaksamaan linear dua variabel dalam kehidupan sehari-hari. Menentukan estimasi pengolahan bahan produksi. Menentukan estimasi keuntungan maksimum dari penjualan beberapa produk. Menentukan pengeluaran minimum dari pembelian satu barang atau jasa. Menentukan panjang maksimum kayu untuk membuat meja. Menentukan kisaran harga pembelian barang dan jasa yang tidak diketahui harga setiap barangnya. Selain empat contoh di atas, masih ada contoh-contoh lainnya lho. Coba deh sebutin lainnya! Contoh Soal Pertidaksamaan Linear Dua Variabel Untuk mengasah kemampuanmu, yuk simak beberapa contoh soal berikut. Contoh Soal 1 Abel sedang berada di acara festival makanan. Di acara tersebut, ia membeli dua jenis makanan favoritnya, yaitu takoyaki dan sate cumi. Harga setiap makanannya pun juga terbilang murah. Total harga yang harus dibayarkan Abel untuk pembelian 6 buah takoyaki dan 3 tusuk sate cumi masih di bawah Tentukan daerah penyelesaian yang menunjukkan kemungkinan harga makanan Abel! Pembahasan Mula-mula, kamu harus memisalkan takoyaki dan sate cumi dengan variabel tertentu. Misal, sebuah takoyaki = x dan satu tusuk sate cumi = y Selanjutnya, buatlah model matematis dari harga makanan yang dibeli Abel. 6 takoyaki + 3 tusuk sate cumi < 6x + 3y < Setelah mendapatkan bentuk pertidaksamaannya, gunakan langkah-langkah mencari daerah penyelesaian. Langkah pertama, tentukan titik potong terhadap sumbu-x dan sumbu-y. 6x + 3y < 0 Ingat, bahwa harga tidak ada yang bertanda negatif, maka berlaku syarat x ≥ 0 dan y ≥ 0. Langkah kedua, buatlah garis persamaan linearnya. Langkah ketiga, lakukan pengujian titik di luar garis dan diperoleh hasil sebagai berikut. Ingat, bahwa harga tidak ada yang bertanda negatif, sehingga dibatasi oleh garis x ≥ 0 dan y ≥ 0. Oleh karena tanda pertidaksamaannya “<”, maka garisnya putus-putus. Jadi, daerah penyelesaiannya adalah daerah yang diarsir, yaitu di bawah garis putus-putus, di atas garis x = 0, dan di sebelah kanan garis y = 0. Contoh Soal 2 Tentukan daerah penyelesaian untuk pertidaksamaan berikut. 3x – 4y < 12 x + 5y ≤ 5 x ≤ 2 Pembahasan Langkah pertama, tentukan semua titik potong terhadap sumbu-x dan sumbu-y. Titik potong 3x – 4y < 12 xyKoordinat0-30, -3404, 0 Titik potong x + 5y ≤ 5 xyKoordinat010, 1505, 0 Lalu, substitusikan ke dalam koordinat Cartesius seperti berikut. Garis 3x – 4y = 12 Garis x + 5y = 5 Garis x = 2 Lakukan pengecekan sifat daerah penyelesaian dengan titik uji 0, 0. Dari pengecekan titik uji, diperoleh hasil sebagai berikut. Daerah penyelesaian 3x – 4y < 12 Daerah penyelesaian x + 5y ≤ 5 Daerah penyelesaian x ≤ 2 Jika digabungkan, diperoleh daerah penyelesaian tunggal seperti berikut. Itulah pembahasan Quipper Blog kali ini. Semoga bisa bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper! PembahasanBerikut adalah daerah penyelesian dari sistem pertidaksamaan linear 2 variabel di atas. Perhatikan segitiga yang terbentuk yaitu segitiga ABC dan segitiga ABD. Untuk mencari luas daerah penyelesaian, kita dapat melakukan operasi pengurangan luas segitiga ABC terhadap segitiga ABD yaitu Jadi, luas daerah sistem pertidaksamaanlinear 2 variabel tersebut adalah 6 satuan luas. Oleh karena itu, jawaban yang benar adalah adalah daerah penyelesian dari sistem pertidaksamaan linear 2 variabel di atas. Perhatikan segitiga yang terbentuk yaitu segitiga ABC dan segitiga ABD. Untuk mencari luas daerah penyelesaian, kita dapat melakukan operasi pengurangan luas segitiga ABC terhadap segitiga ABD yaitu Jadi, luas daerah sistem pertidaksamaan linear 2 variabel tersebut adalah 6 satuan luas. Oleh karena itu, jawaban yang benar adalah A.

daerah yang memenuhi sistem pertidaksamaan linear